Growth Performance of Two Cowpea Varieties with Application of Water Hyacinth Root Extract as Seed Priming
Abstract
Nagara cowpea seeds are susceptible to deterioration during storage, thus seed viability performance must be improved with various techniques including seed invigoration. Organic priming is an invigoration technique that can be obtained from several plants that contain growth regulators. Water hyacinth is an aquatic plant in swampy areas that can be used as a raw material for organic priming. This study aims to determine the response and the best concentration of water hyacinth root extract on the growth of two cowpea varieties. This study used a completely randomized design (CRD) split plot with the main factor being cowpea varieties (G) consisting of 2 levels, G1 (Nagara cowpea) and G2 (KT9 cowpea). The subplot factor is water hyacinth root concentration (C) consisting of 4 levels C0 (without priming), C1 2.5%, C2 5.0%, C3 7.5%. The results showed that the application of water hyacinth root extract affected the growth of two cowpea varieties on plant height, number of branches and number of leaves. The highest plant height was in KT9 cowpea soaked with 5% concentration of root extract. The highest number of branches in Nagara cowpea soaked in water hyacinth root extract at concentration 2.5%. The highest number of leaves in cowpea KT9 soaked in water hyacinth root extract at concentration 7.5%.
References
[2] Winarsi, H., Purwanto, A., Dwiyanti, H. (2010). Kandungan Protein dan Isoflavon pada Kedelai dan Kecambah Kedelai. Biota, 15(2),181-187.
[3] Eskandari, H., Kazemi, K. (2011). Effect of seed priming on germination properties and seedling establishment of cowpea (Vigna sinensis). Notulae Scientia Biologicae, 3(4), 113–116.
[4] Ndimele, P., Jimoh, A. (2011). Waterhyacinth (Eichhornia crassipes [Mart.] Solms.) in phytoremediation of heavy metal polluted water of Ologe Lagoon, Lagos, Nigeria. Research journal of Environmental Sciences, 5 (5), 424-433.
[5] Begum, S. L., Himaya, S. M. M. S., & Afreen, S. M. M. S. (2022). Potential of water hyacinth (Eichhornia crassipes) as compost and its effect on soil and plant properties: A review. Agricultural Reviews, 43(1), 20-28.
[6] Ting, W. H. T., Tan, I. A. W., Salleh, S. F., & Wahab, N. A. (2018). Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: A review. Journal of water process engineering, 22, 239-249.
[7] Saha, P., Shinde, O., & Sarkar, S. (2017). Phytoremediation of industrial mines wastewater using water hyacinth. International journal of phytoremediation, 19(1), 87-96.
[8] Gul, B., Saeed, M., Khan, H., Khan, M. I., Khan, I. (2017). Impact of water hyacinth and water lettuce aqueous extracts on growth and germination of wheat and its associated troublesome weeds. Applied Ecology & Environmental Research, 15(3).
[9] Ummah, K., Rahayu, Y. S. (2019). The effect of gibberellin extracted from Eichhornia crassipes root on the viability and duration of hard seed germination. Mathematics, Informatics, Science and Education International Conference (MISEIC). 1417p. Surabaya: IOP J. Phys.: Conf.Ser.
[10] Sagita, E. R., Rahayu, Y. S. (2022). Invigorasi Benih Bayam (Amaranthus sp.) Kadaluarsa Dengan Ekstrak Akar Eceng Gondok. LenteraBio: Berkala Ilmiah Biologi, 11(2), 326-340.
[11] Wardiah, I., Noor, H., Fauzan, R., Sholihin, F. (2019). Pemanfaatan eceng gondok untuk pemberdayaan ekonomi masyarakat di desa Jelapat I Kabupaten Barito Kuala. Jurnal Impact: Implementation and Action, 1(2), 152-161.
[12] Wahdah, R.. Ellya, H. (2021). Application of concentration and kinds of solution roots of water hyacinth (Eichhornia crassipes) to increase the seed quality performance of cowpea (Vigna unguiculata ssp. cylindrica). IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS),14(10), 31-40.
[13] Musbakri. (1999). Ekstraksi dan Identifikasi Giberelin Dari Akar Eceng Gondok (Eichhornia crassipes). Skripsi. Fakultas Teknologi Pertanian. Bogor: Institut Pertanian Bogor.
[14] Richards, D.E., K.E King., T Ait-ali., & NP Harberd. (2001). How Gibberellin Regulates Plant Growth and Development: A Molecular Genetic Analysis of Gibberellin Signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 67-88.
[15] Matsuoka M. (2003). Giberelin Signaling : How Do Plant Cells Respon to GA signals. J. Plant Growth Regul 22: 123-125.
[16] Chudasama, R. S., & Thaker, V. (2007). Free and conjugated IAA and PAA in developing seeds of two varieties of pigeon pea (Cajanus cajan). General and Applied Plant physiology, 33(1-2), 41-57.
[17] Wahdah, R., Ellya, H., Hairina, H. (2020). Respon Viabilitas Benih Kacang Tunggak Nagara (Vigna unguiculata ssp cylindrica) Akibat Pemberian Konsentrasi Ekstrak Akar Eceng Gondok (Eichhornia crassipes). Rawa Sains: Jurnal Sains STIPER Amuntai, 10(2), 63-73.
[18] Napitupulu, B. (2020). Respon Daya Berkecambah dan Pertumbuhan Benih Mucuna bracteata Melalui Pematahan Dormansi dan Pemberian Zat Pengatur Tumbuh (ZPT) Alami. Skripsi. Dipublikasikan. Medan: Fakultas Pertanian Universitas Medan Area.
[19] Gul, B., Saeed, M., Khan, H., Khan, M. I., & Khan, I. (2017). Impact of water hyacinth and water lettuce aqueous extracts on growth and germination of wheat and its associated troublesome weeds. Applied Ecology & Environmental Research, 15(3).
[20] Suyatmi, S., Endah, D.H., Sri, D. (2011). Pengaruh Lama Perendaman dan KonsentrasiAsam Sulfat (H2SO4) Terhadap Perkecambahan Benih Jati (Tectona grandis Linn.). Anatomi Fisiologi; 19(1): 28-36.
[21] Eskandari, H., Kazemi, K. (2011). Effect of seed priming on germination properties and seedling establishment of cowpea (Vigna sinensis). Notulae Scientia Biologicae, 3(4), 113–116.
[22] Ousman, A., Aune, J. B. (2011). Effect of seed priming and micro-dosing of fertilizer on groundnut, sesame and cowpea in Western Sudan. Experimental Agriculture, 47(3), 431–443.
[23] Sugiarti, L., Indriana, K. R., Hadi, R. A. (2017). Uji ketahanan varietas padi lokal jawa barat dan responnya terhadap pemberian giberelin pada kondisi cekaman rendaman sebagai upaya peningkatan produksi di lahan rawan banjir. Jurnal Agroekoteknologi, 9(2).
[24] Abu-Ellail, F. F., Gadallah, A. F. I., El-Gamal, I. S. H. (2020). Genetic variance and performance of five sugarcane varieties for physiological, yield and quality traits influenced by various harvest age. Journal of Plant Production, 11(5), 429-438.
[25] Swarup, S., Cargill, E. J., Crosby, K., Flagel, L., Kniskern, J., Glenn, K. C. (2021). Genetic diversity is indispensable for plant breeding to improve crops. Crop Science, 61(2), 839-852.
[26] Suprapto., Khairudin, N. M. (2007). Variasi genetik, heritabilitas, tindak gen dan kemajuan genetik kedelai (Glycine max Merrill) pada Ultisol. Jurnal Ilmu-ilmu Pertanian Indonesia, 9 (2), 183—190.
[27] Mukmin. A., Iskandar. (2007). Uji Keturunan Saudara Tiri (Haf-sib) sengon (Paraserianthers falcataria L. Nielsen) di Taman Hutan Cikabayan. Jurnal Manajemen Hutan Tropika, 12(1), 78-92.
[28] Wuriesyliane, W., Sawaluddin, S. (2022). Aplikasi Berbagai konsentrasi Zat Pengatur Tumbuh (ZPT) Terhadap Pertumbuhan dan Hasil Tanaman Baby Buncis (Phaseolus culgaris L.): Application of Various Concentrations of Plant Growth Regulator (PGR) on the Growth and Yield of Common Bean (Phaseolus culgaris L.). J-Plantasimbiosa, 4(1), 64-70.
[29] Gallavotti, A. (2013). The role of auxin in shaping shoot architecture. Journal of experimental botany, 64(9), 2593-2608.
[30] Ma?kowski, E., Sitko, K., Ziele?nik-Rusinowska, P., Giero?, ?., & Szopi?ski, M. (2019). Heavy metal toxicity: Physiological implications of metal toxicity in plants. Plant metallomics and functional omics: a system-wide perspective, 253-301.
[31] Carlos, E., Lerma, T. A., Martínez, J. M. (2021). Phytohormones and plant growth regulators—a review. J Sci with Technol Appl, 10, 27-65.
[32] Han, X., Zeng, H., Bartocci, P., Fantozzi, F., Yan, Y. (2018). Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation, 4(2), 25.
[33] Castro-Camba, R., Sánchez, C., Vidal, N., Vielba, J. M. (2022). Plant development and crop yield: The role of gibberellins. Plants, 11(19), 2650.
[34] Bote, A. D., Jan, V. (2016). Branch growth dynamics, photosynthesis, yield and bean size distribution in response to fruit load manipulation in coffee trees. Trees, 30, 1275-1285.
[35] Rademacher, W. (2015). Plant growth regulators: backgrounds and uses in plant production. Journal of plant growth regulation, 34, 845-872.
[36] Ritonga, F. N., Zhou, D., Zhang, Y., Song, R., Li, C., Li, J., Gao, J. (2023). The roles of gibberellins in regulating leaf development. Plants, 12(6), 1243.
[37] Sprangers, K., Thys, S., Van Dusschoten, D., Beemster, G. T. (2020). Gibberellin enhances the anisotropy of cell expansion in the growth zone of the maize leaf. Frontiers in plant science, 11, 1163.
[38] Mok, M. C. (2019). Cytokinins and plant development—an overview. Cytokinins, 155-166.
[39] Pratomo, B., C. Hanum., dan L. A. P. Putri. (2016). Pertumbuhan okulasi tanaman karet (Hevea brassiliensis Muell arg.) dengan tinggi penyerongan batang bawah dan benzilaminopurin (BAP) pada pembibitan polibag. Jurnal Pertanian Tropik, 2 (13), 119-123.
[40] Schaller, G. E., Street, I. H., Kieber, J. J. (2014). Cytokinin and the cell cycle. Current opinion in plant biology, 21, 7-15.
[41] Rochmatino., Prayoga, L. (2011). Pengaruh Pemberian NAA dan Sitokinin terhadap Pertumbuhan Hasil Teknik Sambung Adenium. Agritech, 8 (2), 96104.
[42] Roman, H., Girault, T., Barbier, F., Péron, T., Brouard, N., P?n?ík, A., …Leduc, N. (2016). Cytokinins are initial targets of light in the control of bud outgrowth. Plant Physiology, 172(1), 489-509.
[43] Letham, D. S. (2019). Cytokinins as phytohormones—sites of biosynthesis, translocation, and function of translocated cytokinin. In Cytokinins (pp. 57-80). CRC press.
[44] Tan, M., Li, G., Chen, X., Xing, L., Ma, J., Zhang, D., ... & An, N. (2019). Role of cytokinin, strigolactone, and auxin export on outgrowth of axillary buds in apple. Frontiers in plant science, 10, 616.
[45] Sharma, A., Zheng, B. (2019). Molecular responses during plant grafting and its regulation by auxins, cytokinins, and gibberellins. Biomolecules, 9(9), 397.
[46] Sosnowski, J., Truba, M., Vasileva, V. (2023). The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture, 13(3), 724.
[47] Evans, J. R. (2013). Improving photosynthesis. Plant physiology, 162(4), 1780-1793.
[48] Singh, S. P., Singh, S., Dubey, A. N., & Rajput, R. K. (2020). Biofertilizers and plant growth regulators as key player in sustainable agriculture by enhancing soil fertility and crop productivity. Environ. Agric. Heal, 12-18.
[49] Shimizu, T., Inoue, K. I., Hachiya, H., Shibuya, N., Shimoda, M., & Kubota, K. (2014). Frequent alteration of the protein synthesis of enzymes for glucose metabolism in hepatocellular carcinomas. Journal of gastroenterology, 49, 1324-1332.
[50] Su, Y. H., Liu, Y. B., Zhang, X. S. (2011). Auxin–cytokinin interaction regulates meristem development. Molecular plant, 4(4), 616-625.
[51] Schaller, G. E., Bishopp, A., Kieber, J. J. (2015). The yin-yang of hormones: cytokinin and auxin interactions in plant development. The Plant Cell, 27(1), 44-63.
[52] Kurepa, J., Shull, T. E., Smalle, J. A. (2019). Antagonistic activity of auxin and cytokinin in shoot and root organs. Plant Direct, 3(2), e00121.
[53] Pavlista, A.D., K. Santra, and D.D. Baltens- perger. (2013). Bioassay of winter whefor gibberellic acid sensitivity. Am. J. of Plant Sci., 4, 2015-2022.
[54] Nelissen, H., Rymen, B., Jikumaru, Y., Demuynck, K., Van Lijsebettens, M., Kamiya, Y., ... & Beemster, G. T. (2012). A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division. Current Biology, 22(13), 1183-1187.
[55] Yudianto, A. A., Fajriani, S., Aini, N. (2015). Pengaruh Jarak Tanam dan Frekuensi Pembumbunan Terhadap Pertumbuhan dan Hasil Tanaman Garut (Marantha arundinaceae L.). Jurnal Produksi Tanaman, 3 (3), 172-181.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).