Durabilitas beton yang mengandung agregat ringan buatan berbahan dasar abu terbang (fly ash)
Abstrak
Rendahnya konsumsi fly ash di Indonesia perlu diatasi untuk menghindari penimbunan material ini. Penggunaan bahan ini sebagai bahan baku untuk memproduksi agregat ringan menjadi salah satu solusi alternatif untuk meningkatkan konsumsi fly ash, karena agregat ini memiliki porsi yang cukup tinggi dalam campuran beton. Namun, karena agregat ringan memiliki porositas yang tinggi, maka daya tahan agregat ringan terutama dalam hal penyerapan air di lingkungan yang agresif perlu diteliti. Oleh karena itu, penelitian ini bertujuan untuk mengetahui durabilitas beton yang mengandung fly ash-based lightweight aggregate (FA LWA) di lingkungan garam. Lingkungan garam ditirukan dengan larutan natrium klorida dan natrium sulfat. Pada produksi beton, aggregat kasar disubsitusi dengan FA dan EC LWA dengan kadar penggantian 50 dan 100%. Selanjutnya sifat fisik, mekanik dan durabilitas beton dinilai dengan melakukan uji berat jenis, kuat tekan dan kecepatan kapiler di lingkungan garam. Hasil penelitian menunjukkan bahwa berat jenis berbanding terbalik dengan persentase kandungan LWA yang digunakan. Selain itu, dari hasil uji serapan air kapiler beton menunjukkan bahwa beton yang mengandung FA LWA memperoleh nilai serapan yang lebih tinggi dibandingkan dengan beton kontrol. Berdasarkan hasil uji serapan air kapiler dengan menggunakan larutan yang berbeda, menunjukkan bahwa beton FA LWA lebih tahan dalam lingkungan basa atau mengandung larutan garam (NaCl). Hasil penelitian ini berkontribusi memberi terobosan baru bahwa konsumsi fly ash dapat ditingkatkan dengan mentransformasi fly ash menjadi aggregate ringan buatan yang memiliki ketahanan tinggi di lingkungan air laut.
Referensi
Balapour, M., Khaneghahi, M. H., Garboczi, E. J., Hsuan, Y. G., Hun, D. E., & Farnam, Y. (2022). Off-spec fly ash-based lightweight aggregate properties and their influence on the fresh, mechanical, and hydration properties of lightweight concrete: A comparative study. Construction and Building Materials, 342, 128013. https://doi.org/10.1016/J.CONBUILDMAT.2022.128013
BSN. (1991). SK SNI T-15-1991-03 tentang Perhitungan Struktur Beton Untuk Bangunan Gedung. Jakarta: Badan Standardisasi Nasional.
BSN. (2019). SNI 2847:2019 tentang Persyaratan Beton Struktural untuk Bangunan Gedung. Jakarta: Badan Standardisasi Nasional.
De Brabandere, L., Alderete, N. M., & De Belie, N. (2022). Capillary Imbibition in Cementitious Materials: Effect of Salts and Exposure Condition. Materials, 15(4). https://doi.org/10.3390/ma15041569
Ekaputri, J. J., Shahib, M., & Bari, A. (2020). Perbandingan Regulasi Fly Ash sebagai Limbah B3 di Indonesia dan Beberapa Negara. Media Komunikasi Teknik Sipil, 26(2), 150–162.
Ekaputri, J. J., & Triwulan, T. (2013). Sodium sebagai Aktivator Fly Ash, Trass dan Lumpur Sidoarjo dalam Beton Geopolimer. Jurnal Teknik Sipil, 20(1), 1. https://doi.org/10.5614/jts.2013.20.1.1
Geetha, S., & Ramamurthy, K. (2013). Properties of geopolymerised low-calcium bottom ash aggregate cured at ambient temperature. Cement and Concrete Composites, 43, 20–30. https://doi.org/10.1016/j.cemconcomp.2013.06.007
Geso?lu, M., Güneyisi, E., Alzeebaree, R., & Mermerda?, K. (2013). Effect of silica fume and steel fiber on the mechanical properties of the concretes produced with cold bonded fly ash aggregates. Construction and Building Materials, 40, 982–990. https://doi.org/10.1016/j.conbuildmat.2012.11.074
Geso?lu, M., Özturan, T., & Güneyisi, E. (2007). Effects of fly ash properties on characteristics of cold-bonded fly ash lightweight aggregates. Construction and Building Materials, 21(9), 1869–1878. https://doi.org/10.1016/j.conbuildmat.2006.05.038
Güneyisi, E., Geso?lu, M., Pürsünlü, Ö., & Mermerda?, K. (2013). Durability aspect of concretes composed of cold bonded and sintered fly ash lightweight aggregates. Composites Part B: Engineering, 53, 258–266. https://doi.org/10.1016/j.compositesb.2013.04.070
Hardjito, D. (2005). Studies on Fly Ash-Based Geopolymer Concrete. Curtin University of Technology, November, 94. https://doi.org/10.1177/1049909113506980
Illikainen, Y. P. F. T. (2017). Development and incorporation of lightweight waste-based geopolymer aggregates in mortar and concrete. Construction and Building Materials, 131, 784–792. https://doi.org/10.1016/j.conbuildmat.2016.11.017
Kourti, I., & Cheeseman, C. R. (2010). Properties and microstructure of lightweight aggregate produced from lignite coal fly ash and recycled glass. Resources, Conservation and Recycling, 54(11), 769–775. https://doi.org/10.1016/j.resconrec.2009.12.006
Luo, Z., Li, W., Wang, K., Castel, A., & Shah, S. P. (2021). Comparison on the properties of ITZs in fly ash-based geopolymer and Portland cement concretes with equivalent flowability. Cement and Concrete Research, 143(February), 106392. https://doi.org/10.1016/j.cemconres.2021.106392
Nurjaman, B. Z., Roestaman, R., & Walujodjati, E. (2021). Pengaruh Penggunaan Agregat Abu Batu Sebagai Pengganti Agregat Halus Alami Terhadap Sifat-Sifat Beton. Jurnal Konstruksi, 19(1), 31–42. https://doi.org/10.33364/konstruksi/v.19-1.890
Paudel, S. R., Yang, M., & Gao, Z. (2020). pH Level of Pore Solution in Alkali-Activated Fly-Ash Geopolymer Concrete and Its Effect on ASR of Aggregates with Different Silicate Contents. Journal of Materials in Civil Engineering, 32(9), 04020257. https://doi.org/10.1061/(asce)mt.1943-5533.0003344
Promsawat, P., Chatveera, B., Sua-iam, G., & Makul, N. (2020). Properties of self-compacting concrete prepared with ternary Portland cement-high volume fly ash-calcium carbonate blends. Case Studies in Construction Materials, 13, e00426. https://doi.org/10.1016/j.cscm.2020.e00426
Risdanareni, P., Choiri, A. A., Djatmika, B., & Puspitasari, P. (2017). Effect of the Use of Metakaolin Artificial Lightweight Aggregate on the Properties of Structural Lightweight Concrete. Civil Engineering Dimension, 19(2), 86–92. https://doi.org/10.9744/ced.19.2.86-92
Risdanareni, P., Van den Heede, P., Wang, J., & De Belie, N. (2021). The durability of mortar containing alkali activated fly ash-based lightweight aggregate. Materials, 14(13). https://doi.org/10.3390/ma14133741
Risdanareni, P., Villagran, Y., Schollbach, K., Wang, J., & de Belie, N. (2020). Properties of alkali activated lightweight aggregate generated from Sidoarjo Volcanic Mud (Lusi), fly ash, and municipal solid waste incineration bottom ash. Materials, 13(11). https://doi.org/10.3390/ma13112528
Salain, I. M. A. K. (2021). Kekuatan dan Permeabilitas Beton Abu Terbang Volume Tinggi. Jurnal Teknik Sipil, 28(2), 133–142. https://doi.org/10.5614/jts.2021.28.2.2
Tang, P., & Brouwers, H. J. H. (2017b). Integral recycling of municipal solid waste incineration (MSWI) bottom ash fines (0–2 mm) and industrial powder wastes by cold-bonding pelletization. Waste Management, 62, 125–138. https://doi.org/10.1016/j.wasman.2017.02.028
Tang, P., Florea, M. V. A., & Brouwers, H. J. H. (2017a). Employing cold bonded pelletization to produce lightweight aggregates from incineration fine bottom ash. Journal of Cleaner Production, 165, 1371–1384. https://doi.org/10.1016/j.jclepro.2017.07.234
Thomas, J., & Harilal, B. (2015). Cement & Concrete Composites Properties of cold bonded quarry dust coarse aggregates and its use in concrete. CEMENT AND CONCRETE COMPOSITES, 62, 67–75. https://doi.org/10.1016/j.cemconcomp.2015.05.005
Zhang, L., Zhang, Y., Liu, C., Liu, L., & Tang, K. (2017). Study on microstructure and bond strength of interfacial transition zone between cement paste and high-performance lightweight aggregates prepared from ferrochromium slag. Construction and Building Materials, 142, 31–41. https://doi.org/10.1016/j.conbuildmat.2017.03.083
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).