Pengaruh pasang surut air laut terhadap kekuatan beton komposit material Ground Granulated Blast Furnace Slag (GGBFS)

  • Muhammad Kemal Rafif Program Studi Teknik Sipil, Institut Teknologi Sumatera, Lampung, Indonesia
  • Alfinna Mahya Ummati Program Studi Teknik Sipil, Institut Teknologi Sumatera, Lampung, Indonesia
Kata Kunci: GGBFS, beton, kuat tekan, air laut, kuat tarik

Abstrak

Beton merupakan material yang umum digunakan untuk membangun infrastruktur pada berbagai kondisi lingkungan, namun beton memiliki kelemahan pada lingkungan yang terpapar air garam. Sehingga penulis bermaksud meneliti mengenai dampak paparan air laut terhadap kuat tekan dan kuat tarik belah beton, serta menggunakan Ground Granulated Blast Furnace Slag (GGBFS) sebagai pengganti semen untuk mengurang dampak paparan air laut terhadap beton. Pada penelitian ini, peneliti akan melakukan percobaan dengan memaparkan beton dengan air laut buatan dengan siklus kering basah dengan durasi perendaman 24 jam, 16 jam, dan 8 jam, sebagai intepretasi dari siklus pasang surut air laut. Hasil pengujian yang didapat adalah dengan menambahkan GGBFS dalam campuran beton sebanyak 20%, beton akan mengalami peningkatan performa dari 29.06 MPa pada kuat tekan dan 2.34 MPa pada tarik belah menjadi 32.17 MPa pada kuat tekan dan 3.64 pada kuat tarik belah, jika dibandingkan dengan beton tanpa tambahan GGBFS, dan dengan memaparkannya dengan air laut selama 24 jam, beton dengan campuran GGBFS 20% memiliki kuat tekan yang lebih baik dari beton normal tanpa campuran GGBFS, namun dengan kadar GGBFS 40% beton akan mengalami penurunan performa menjadi 26.98 MPa. Sedangkan berdasarkan metode perendaman menggunakan air laut yang telah dilakukan, penurunan performa menjadi 24.15 MPa ketika mengalami siklus perendaman 8 jam, dan pengeringan selama 16 jam  Hal ini membuktikan bahwa beton yang terpapar air laut akan mengalami penurunan kekuatan terlebih pada kondisi pasang-surut yang ekstrim. Pemanfaatan GGBFS sebagai bahan campuran beton merupakan salah satu upaya pemanfaatan limbah, namun terdapat proporsi ideal dan teknik pencampuran yang perlu diperhatikan, sehingga beton limbah tidak mengalami kehilangan performa yang signifikan.

Referensi

Ahmad, S., Kumar, A., & Kumar, K. (2020). Axial performance of GGBFS concrete filled steel tubes. Structures, 23, 539–550. https://doi.org/10.1016/j.istruc.2019.12.005

Amran, M., Murali, G., Khalid, N. H. A., Fediuk, R., Ozbakkaloglu, T., Lee, Y. H., Haruna, S., & Lee, Y. Y. (2021). Slag uses in making an ecofriendly and sustainable concrete: A review. Construction and Building Materials, 272, 121942. https://doi.org/10.1016/j.conbuildmat.2020.121942

Cahyani, R. A. T., Setyono, E., & Rusdianto, Y. (2020). Performa Beton Dengan Ground Granulated Blast Furnace Slag Terhadap Sulfate Attack. Jurnal Rekayasa Sipil (JRS-Unand), 16(3), 185. https://doi.org/10.25077/jrs.16.3.185-193.2020

Gong, J., Cao, J., & Wang, Y. (2016). Effects of sulfate attack and dry-wet circulation on creep of fly-ash slag concrete. Construction and Building Materials, 125, 12–20. https://doi.org/10.1016/j.conbuildmat.2016.08.023

Ince, R. (2017). The fracture mechanics formulas for split-tension strips. Journal of Theoretical and Applied Mechanics, 607. https://doi.org/10.15632/jtam-pl.55.2.607

Indriyanto, L. A., Saputra, A., & Sulistyo, D. (2020). Pengaruh air laut pada masa perawatan terhadap infiltrasi ion klorida pada beton dengan penambahan fly ash 12.5%. Jurnal Riset Rekayasa Sipil, 3(2), 61. https://doi.org/10.20961/jrrs.v3i2.40955

Jin, Q., & Chen, L. (2022). A Review of the Influence of Copper Slag on the Properties of Cement-Based Materials. Materials, 15(23), 8594. https://doi.org/10.3390/ma15238594

Kim, H. G., Atta-ur-Rehman, Qudoos, A., & Ryou, J.-S. (2018). Self-healing performance of GGBFS based cementitious mortar with granulated activators exposed to a seawater environment. Construction and Building Materials, 188, 569–582. https://doi.org/10.1016/j.conbuildmat.2018.08.092

Li, K., Zeng, Q., Luo, M., & Pang, X. (2014). Effect of self-desiccation on the pore structure of paste and mortar incorporating 70% GGBS. Construction and Building Materials, 51, 329–337. https://doi.org/10.1016/j.conbuildmat.2013.10.063

Marí, A., Cladera, A., Bairán, J., Oller, E., & Ribas, C. (2014). Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected to point or distributed loads. Frontiers of Structural and Civil Engineering, 8(4), 337–353. https://doi.org/10.1007/s11709-014-0081-0

Mohan, A., & Mini, K. M. (2018). Strength and durability studies of SCC incorporating silica fume and ultra fine GGBS. Construction and Building Materials, 171, 919–928. https://doi.org/10.1016/j.conbuildmat.2018.03.186

Momeen Ul Islam, M., Li, J., Roychand, R., & Saberian, M. (2023). Microstructure, thermal conductivity and carbonation resistance properties of sustainable structural lightweight concrete incorporating 100% coarser rubber particles. Construction and Building Materials, 408, 133658. https://doi.org/10.1016/j.conbuildmat.2023.133658

Nishanth, L., & Patil, Dr. N. N. (2022). Experimental evaluation on workability and strength characteristics of self-consolidating geopolymer concrete based on GGBFS, flyash and alccofine. Materials Today: Proceedings, 59, 51–57. https://doi.org/10.1016/j.matpr.2021.10.200

Nurokhman, N. (2020). Fiber gelas ex limbah porselen sebagai bahan tambah pada beton normal. CivETech, 15(1), 50–57. https://doi.org/10.47200/civetech.v15i1.716

Prayogo, L. M. (2021). Analisis kenaikan muka air laut di perairan kalianget kabupaten sumenep tahun 2000-2020. Juvenil: Jurnal Ilmiah Kelautan Dan Perikanan, 2(1), 61–68. https://doi.org/10.21107/juvenil.v2i1.10035

Sakr, M. R., & Bassuoni, M. T. (2021). Performance of concrete under accelerated physical salt attack and carbonation. Cement and Concrete Research, 141, 106324. https://doi.org/10.1016/j.cemconres.2020.106324

Sharmila, P., & Dhinakaran, G. (2016). Compressive strength, porosity and sorptivity of ultra fine slag based high strength concrete. Construction and Building Materials, 120, 48–53. https://doi.org/10.1016/j.conbuildmat.2016.05.090

Shi, J., Sun, S., Cao, X., & Wang, H. (2023). Pullout behaviors of basalt fiber-reinforced polymer bars with mechanical anchorages for concrete structures exposed to seawater. Construction and Building Materials, 373, 130866. https://doi.org/10.1016/j.conbuildmat.2023.130866

Teng, S., Lim, T. Y. D., & Sabet Divsholi, B. (2013). Durability and mechanical properties of high strength concrete incorporating ultra fine Ground Granulated Blast-furnace Slag. Construction and Building Materials, 40, 875–881. https://doi.org/10.1016/j.conbuildmat.2012.11.052

Topçu, İ. B. (2013). High-volume ground granulated blast furnace slag (GGBFS) concrete. In Eco-Efficient Concrete (pp. 218–240). Elsevier. https://doi.org/10.1533/9780857098993.2.218

Wang, M., Xie, Y., Long, G., Ma, C., & Zeng, X. (2019). Microhardness characteristics of high-strength cement paste and interfacial transition zone at different curing regimes. Construction and Building Materials, 221, 151–162. https://doi.org/10.1016/j.conbuildmat.2019.06.084

Wang, Y., Song, Y., Xue, J., Sun, X., & Xue, R. (2023). Effects of incorporating polynary SCMs on sulfate resistance and chloride impermeability of concrete considering capillary action in dry-wet cycling environment. Construction and Building Materials, 395, 132262. https://doi.org/10.1016/j.conbuildmat.2023.132262

Xin, J., Zhang, G., Liu, Y., Wang, Z., Yang, N., Wang, Y., Mou, R., Qiao, Y., Wang, J., & Wu, Z. (2020). Environmental impact and thermal cracking resistance of low heat cement (LHC) and moderate heat cement (MHC) concrete at early ages. Journal of Building Engineering, 32, 101668. https://doi.org/10.1016/j.jobe.2020.101668

Yang, K.-H., Lee, Y., & Mun, J.-H. (2019). A Stress-Strain Model for Unconfined Concrete in Compression considering the Size Effect. Advances in Materials Science and Engineering, 2019, 1–13. https://doi.org/10.1155/2019/2498916

Zheng, X., Ji, T., Easa, S. M., & Ye, Y. (2018). Evaluating feasibility of using sea water curing for green artificial reef concrete. Construction and Building Materials, 187, 545–552. https://doi.org/10.1016/j.conbuildmat.2018.07.140

Diterbitkan
2023-12-25
Bagian
Articles
Abstrak viewed = 107 times
PDF (English) downloaded = 115 times