EFEK PENGGUNAAN PASIR BATU APUNG SEBAGAI PENGGANTI SEBAGIAN AGREGAT HALUS PADA CAMPURAN BETON RINGAN

  • Abdul Gaus Program Studi Teknik Sipil, Universitas Khairun, Ternate, Maluku Utara, Indonesia
  • Mufti Amir Sultan Program Studi Teknik Sipil, Universitas Khairun, Ternate, Maluku Utara, Indonesia
  • Raudha Hakim Program Studi Teknik Sipil, Universitas Khairun, Ternate, Maluku Utara, Indonesia
Keywords: compressive strength, lightweight concrete, pumice sand, volume weight

Abstract

Lightweight concrete is obtained using pumice sand as a substitute for fine aggregate. The expected advantage of lightweight concrete is to reduce the self-weight of the concrete, which is a dead load on the structure. This study aims to determine the effect of using pumice sand on concrete volume weight, compressive and tensile strength.  Research methods with testing in the laboratory. The test object used is cylindrical with a height of 30 cm and a diameter of 15 cm, according to SNI-03-1974. The coarse aggregate of pumice and the fine aggregate of pumice sand were sourced from the Dowora quarry on Tidore Island. Fine aggregate in control specimens using normal sand from the Kalumata quarry on Ternate Island. Using pumice sand as fine aggregate with a ratio of 75% normal sand, 20% pumice sand, 50% normal sand and 50% pumice sand, 25% normal sand and 75% pumice sand, and 100% pumice sand. Control test object using 100% normal sand. Each variation of the test object is ten pieces, so that the total test object is 50. The results of this study indicate that the volume weight decreased along with the addition of pumice sand weight into the concrete mixture. Therefore, If the volume of concrete produced is < 1900 kg/m3, the concrete is classified as lightweight. The resulting compressive strength of 56.63 kg/cm2 decreased to 81.10% of the control test object. The split tensile strength of concrete is 1.13 kg/cm2, or a decrease of 52.05% of the control test object. Based on the compressive and tensile strength, concrete is categorized as lightweight structural concrete as an insulator.

References

Ala, P., & Arruan, H. (2017). Beton Ringan Menggunakan Styrofoam Sebagai Bahan Pengganti Agregat Kasar. Prosiding Seminar Hasil Penelitian (SNP2M) 2017, 67–72.

Arifin, I. B., & Pertiwi, D. (2021). Pengaruh Penggunaan Batu Apung Sebagai Pengganti Agregat Kasar Ditinjau Dari Kuat Tekan. Jurnal Teknik Sipil, 1(2), 114–120. https://doi.org/10.31284/j.jts.2020.v1i2.1404

BSN. (1990a). SNI 03-1968-1990 tentang metode pengujian tentang analisis saringan agregat halus dan kasar. Badan Standardisasi Nasional.

BSN. (1990b). SNI 03-1971-1990 tentang metode pengujian kadar air agregat. Badan Standardisasi Nasional.

BSN. (1998). SNI 03-4804-1998 tentang metode pengujian bobot isi dan rongga udara dalam agregat. Badan Standardisasi Nasional.

BSN. (2002a). SNI 03-2461-2002 tentang spesifikasi agregat ringan untuk beton ringan struktural. Badan Standardisasi Nasional.

BSN. (2002b). SNI 03-2491-2002 tentang metode pengujian kuat tarik belah beton. Badan Standardisasi Nasional.

BSN. (2002c). SNI 03-2847-2002 tentang tata cara perhitungan struktur beton untuk bangunan gedung. Badan Standardisasi Nasional.

BSN. (2002d). SNI 03-3449-2002 tentang tata cara rencana pembuatan campuran beton ringan dengan agregat ringan. Badan Standardisasi Nasional.

BSN. (2008a). SNI 1969-2008 tentang cara uji berat jenis dan penyerapan air agregat kasar. Badan Standardisasi Nasional.

BSN. (2008b). SNI 1970-2008 tentang cara uji berat jenis dan penyerapan air agregat halus. Badan Standardisasi Nasional.

BSN. (2011). SNI 03-1974-2011 tentang cara uji kuat tekan beton dengan benda uji silinder. Badan Standardisasi Nasional.

Dash, M. K., Patro, S. K., & Rath, A. K. (2016). Sustainable use of industrial-waste as partial replacement of fine aggregate for preparation of concrete – A review. International Journal of Sustainable Built Environment, 5(2), 484–516. https://doi.org/10.1016/j.ijsbe.2016.04.006

Durga, B., & Indira, M. (2016). Experimental Study on Various Effects of Partial Replacement of Fine Aggregate with Silica Sand in Cement Concrete and Cement Mortar. International Journal of Engineering Trends and Technology, 33(5), 252–256. https://doi.org/10.14445/22315381/IJETT-V33P250

Gaus, A., Imran, & Anwar, C. (2020). Analysis of The Mechanical Properties of Concrete Beams That Use Pumice as a Partial Substitution of Concrete Mixtures. Journal of Physics: Conference Series, 1569(4), 042037. https://doi.org/10.1088/1742-6596/1569/4/042037

Gaus, A., Sultan, M. A., Hakim, R., Imran, & Waiola, I. A. (2020). Substitusi Parsial Batu Apung sebagai Agregat Kasar pada Campuran Beton. Jurnal Teknik Sipil & Teknologi Konstruksi, 6(2), 11–19. https://doi.org/http://dx.doi.org/10.35308/jts-utu.v6i2.2743

Ginting, A. (2019). Kajian Balok Beton Styrofoam Ringan Dengan Tulangan Menyebar. Jurnal Teknik Sipil, 3(2), 127–140. https://doi.org/10.28932/jts.v3i2.1284

Hossain, S. M., & Morshed, A. Z. (2020). Artificial Lightweight Aggregate Production Using Rice Husk Ash. Proceedings of the 5th International Conference on Civil Engineering for Sustainable Development (ICCESD 2020), 1–7.

Indrayani, I., Herius, A., Hasan, A., & Mirza, A. (2020). The Effect of Addition on Pumice and Fiber on Compressive and Fluxural Strength Precast Lightweight Concrete. Science and Technology Indonesia, 5(1), 14–17. https://doi.org/10.26554/sti.2020.5.1.14-17

Jumiati, E., & Masthura, M. (2018). Pembuatan Beton Ringan Berbasis Sampah Organik. FISITEK : Jurnal Ilmu Fisika Dan Teknologi, 2(1), 15. https://doi.org/10.30821/fisitek.v2i1.1543

Kwek, S. Y., & Awang, H. (2018). Artificial lightweight aggregate from palm oil fuel ash (POFA) and water treatment waste. IOP Conference Series: Materials Science and Engineering, 431, 082005. https://doi.org/10.1088/1757-899X/431/8/082005

Maghfouri, M., Alimohammadi, V., Azarsa, P., Asadi, I., Doroudi, Y., & Balakrishnan, B. (2021). Impact of Fly Ash on Time-Dependent Properties of Agro-Waste Lightweight Aggregate Concrete. Journal of Composites Science, 5(6), 156. https://doi.org/10.3390/jcs5060156

Miswar, K. (2018). Beton Ringan dengan Menggunakan Limbah Styrofoam. Portal: Jurnal Teknik Sipil, 10(1). https://doi.org/10.30811/portal.v10i1.981

Miswar, K. (2020). Pemanfaatan Batu Apung sebagai Material Beton Ringan. Portal: Jurnal Teknik Sipil, 12(1), 25–32. https://doi.org/https://dx.doi.org/10.30811/portal.v12i1.1826

Nainggolan, C. R., Wijatmiko, I., & Wibowo, A. (2017). Flexural Behavior of Reinforced Concrete Beam with Polymer Coated Pumice. AIP Conference Proceedings.

Sultan, M. A., Gaus, A., Hakim, R., & Imran. (2021). Review of The Flexural Strength of Lightweight Concrete Beam Using Pumice Stone as of Substitution. International Journal of GEOMATE, 21(85), 154–159.

Sultan, M. A., Kusnadi, & Yudasaputra, M. T. (2018). Effect of Pressure nn Making of Cemen Bricks from Pumice. International Journal of Civil Engineering and Technology (IJCIET), 9(5), 1084–1091.

Sultan, M. A., Yudasaputra, M. T., & Gaus, A. (2019). The Use of Pumice as Raw Material for Cement Brick. International Journal of Civil Engineering and Technology (IJCIET), 10(12), 498–504.

Wibowo, H., & Setiawan, D. B. (2019). Perilaku Mekanik Beton Ringan Styrofoam dengan Variasi Penambahan Abu Sekam Padi. Bangun Rekaprima, 5(1), 29–40. https://doi.org/10.32497/bangunrekaprima.v5i1.1407

Wijatmiko, I., Wibowo, A., & Remayanti, C. (2017). The effect of polymer coated pumice to the stiffness and flexural strength of reinforce concrete beam. MATEC Web of Conferences, 101, 01019. https://doi.org/10.1051/matecconf/201710101019

Published
2023-06-19
Section
Articles
Abstract viewed = 317 times
PDF downloaded = 505 times