Analisis kepuasan pelanggan terhadap kinerja kontraktor pada proyek sistem penyediaan air minum di Kabupaten Minahasa Utara
DOI:
https://doi.org/10.22225/pd.13.2.10183.187-198Keywords:
SPAM, backward elimination, contractor performance, customer satisfaction, naïve bayesAbstract
Improving the quality of the water supply system in North Minahasa Regency is a priority for community welfare through the provision of clean water that supports health, sanitation, and the economy. Contractor performance plays a key role in project success. However, projects often experience delays or failure, so customer satisfaction is not met. This research aims to measure customer satisfaction with contractor performance and identify features that influence satisfaction to provide recommendations for improving contractor performance. A quantitative approach was used through a survey with questionnaires distributed to project owners, supervisory consultants, and technical teams involved between 2021 and 2024. Data analysis was carried out using the Naïve Bayes algorithm and backward elimination techniques to filter out insignificant features. The results showed that 81.4% of customers were satisfied with the contractor's performance, with the model showing 87.14% accuracy, 94.44% precision, and 89.47% recall. The main features that influence satisfaction are: project work performance domain at the planning process, delivery performance domain at the execution process, delivery performance domain at the monitoring and controlling process, measurement performance domain at the execution process, uncertainty performance domain at the initiating process, uncertainty performance domain at the planning process, and uncertainty performance domain at the monitoring and controlling process. Therefore, the Naïve Bayes algorithm is effective in analyzing customer satisfaction data and providing useful insights for contractors.
References
Amaro, F., & Domingues, L. (2023). PMBOK 6th meets 7th: How to link both guides in order to support project tailoring? Procedia Computer Science, 219(2022), 1877–1884. https://doi.org/10.1016/j.procs.2023.01.486
Angkasa, J., Noersasongko, E., & Purwanto. (2023). Data Pre-Processing and Feature Selection Techniques Backward Elimination for Naïve Bayes Classification on Heart Disease Detection. Jurnal Ekonomi Teknologi & Bisnis (JETBIS), 2(4), 334–342.
Aprizal, A., Hasriani, H., & Ningsih, W. (2016). Implementasi Data Mining Untuk Penentuan Posisi Barang pada Rak Menggunakan Metode Apriori Pada PT Midi Utama Indonesia. Techo.COM, 15(4), 335–342.
Baihaqi, Arnia, F., & Muharar, R. (2022). Dataset Kata Jawi untuk Sistem Pengenalan Tulisan Tangan Jawi Kuno. Serambi Engineering, VII(3), 3546–3554.
Cahyani, S. N., & Saraswati, G. W. (2023). Implementation of Support Vector Machine Method in Classifying School Library Books with Combination of Tf-Idf and Word2Vec. Jurnal Teknik Informatika (Jutif), 4(6), 1555–1566. https://doi.org/10.52436/1.jutif.2023.4.6.1536
Fitriana, D., Florencia, Y. K. O., Jati, U. D. H., & Tanto, D. S. (2014). Pengukuran Kepuasan Kontraktor Terhadap Kinerja Klien Pada Proyek Konstruksi Swasta. Jurnal Karya Teknik Sipil, 3(1), 283–295.
Hardani, Andriani, H., Ustiawaty, J., Istiqomah, R., Fardani, R., Sukmana, D., & Auliya, N. (2020). Metode Penelitian Kualitatif & Kuantitatif (H. Abadi, Ed.). CV. Pustaka Ilmu Group Yogyakarta.
Kawulusan, J. A., Dundu, A. K. T., & Rumayar, A. L. E. (2021). Analisis Risiko Pada Proyek Konstruksi. Jurnal Teknik Sipil Unaya, 7(2), 73–86.
Khasani, R. R. (2013). Evaluasi Kepuasan Pelanggan Terhadap Kinerja Manajemen Proyek Kontraktor Besar Bangunan Gedung. Universitas Diponegoro.
Kurniasari, F., & Sugiyanto, E. K. (2020). Dimensi Kualitas Pelayanan Sebagai Upaya Peningkatan Kepuasan Pelanggan (Studi Pada Pelanggan Hotel X Semarang). Business Management Analysis Journal (BMAJ), 3(2), 112–125. https://doi.org/10.24176/bmaj.v3i2.5372
Madeppungeng, A., Intari, D. E., & Nuzulan, N. F. (2018). Evaluasi Kepuasan Pelanggan Terhadap Kinerja Manajemen Proyek Kontraktor Besar (Studi Kasus : Proyek Pembangunan Bendungan Karian Di Kabupaten Lebak, Banten). Jurnal Konstruksia, 10(1), 9–22.
Maulana, R., Djunaedi, A., & Nugraheni, F. (2020). Analisis Kepuasan Pelanggan Terhadap Kinerja Manajemen Proyek Pada Kontraktor Bangunan Gedung Berkualifikasi Kecil di Yogyakarta. Universitas Islam Indonesia.
Nugroho, A., & Subanar, S. (2013). Klasifikasi Naïve Bayes untuk Prediksi Kelahiran pada Data Ibu Hamil. Bimipa, 23(3), 297–308.
PMI. (2017). A Guide To The Project Management Body Of Knowledge (PMBOK) 6th edition and The Standard For Project Management. Project Management Institute, Inc.
PMI. (2021). A Guide To The Project Management Body Of Knowledge (PMBOK) 7th edition and The standard For Project Management. Project Management Institute, Inc.
Putra, W. E., & Apdeni, R. (2022). Kajian Tingkat Kepuasan Pemilik Proyek (Owner) Terhadap Kinerja Kontraktor Pada Pekerjaan Jasa Konstruksi (Studi Kasus: Di Bawah Dinas Pekerjaan Umum Dan Penataan Ruang Kabupaten Pasaman Barat). Journal of Civing Engineering and Vocational Education, 9(1).
Rahman, R., & Sutanto, F. A. (2023). Data Mining Untuk Memprediksi Tingkat Kepuasan Konsumen Gojek Menggunakan Algoritma Naive Bayes. Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 18(1), 8–18. https://doi.org/10.35969/interkom.v18i1.280
Rizki, U., Zuhdi, A. M., & Kusrini. (2019). Sistem Pendukung Keputusan Dengan Metode Naive Bayes Untuk Pemilihan Dosen Pembimbing. Jurnal Informa Politeknik Indonusa Surakarta, 5(2), 65–72.
Rosandy, T. (2016). Perbandingan Metode Naive Bayes Classifier Dengan Metode Decision Tree (C4.5) Untuk Menganalisa Kelancaran Pembiayaan. Jurnal TIM Darmajaya, 2(01), 52–62.
Sahid, M., Listyawan, A., Rochman, A., & Haidar, R. (2019). Analisis Faktor Dominan Yang Mengakibatkan Pembengkakan Biaya Oleh Kontraktor Pada Proyek Jalan Kabupaten Wonogiri Apbd Tahun 2017 Dan 2018. Jurnal Penelitian Dan Kajian Bidang Teknik Sipil, 8(2), 51–57. https://doi.org/https://doi.org/10.35139/cantilever.v8i2.8
Saputra, I. (2023). Belajar Mudah data Mining Untuk Pemula. Informatika.
Saputra, I., & Kristiyanti, D. (2022). Machine Learning Untuk Pemula. Informatika.
Sari, K. P., Chairi, M., Trinanda, A. Y., & Agrival, M. (2023). Penilaian Risiko Keterlambatan Proyek Konstruksi (Studi Kasus: Gedung DPRD Kabupaten Pasaman). Jurnal Rivet (Riset Dan Invensi Teknologi), 03(02), 41–48.
Syahroni, M., & Siswoyo, S. (2019). Analisis Kepuasan Owner Terhadap Kinerja Kontraktor Di Dinas Pekerjaan Umum Dan Penataan Ruang Kabupaten Lumajang. Axial : Jurnal Rekayasa Dan Manajemen Konstruksi, 6(3), 165–170. https://doi.org/10.30742/axial.v6i3.536
Yunitasari, Hopipah, H. S., & Mayasari, R. (2021). Optimasi Backward Elimination untuk Klasifikasi Kepuasan Pelanggan Menggunakan Algoritme k-nearest neighbor (k-NN) and Naive Bayes. Technomedia Journal, 6(1), 99–110. https://doi.org/10.33050/tmj.v6i1.1531
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).