Prestressed beam system due to the addition of a long-span beam in building infrastructure

  • Debora Evlin Department of Civil Engineering, Warmadewa University, Denpasar, 80235, Indonesia
  • I Nengah Sinarta Master Program of Infrastructure and Environmental Engineering, Postgraduate Program, Warmadewa University, Denpasar, 80235, Indonesia
Keywords: increase spans, post-tensioning, prestressed beam

Abstract

Prestressed concrete is the perfect composite consisting of high-strength concrete and strands with reinforcement with high yield strength Prestressed concrete beam is one of the concrete innovations that have been used in many constructions. The advantage of prestressed concrete particularly using the post-tensioning method, in designing and applying prestressed concrete beam for the building is that the tensioning can be carried out in stages, for all tendons in a member, or some of them Prestressed concrete beam using post-tensioning method can be an alternative to increase the span of the building when removing the existing column in the center of the building is required. In this paper, the use of prestressed concrete beam will be designed in Nyitdah Hospital-Tabanan, Bali. The prestressed beam is designed with 60/90 cm dimension and 1 tendon unit with 12 strands unit. Based on the design and result, the prestressed beam can be used as the alternative to increase spans in a building room of the Nyitdah hospital.

References

I. N. Sinarta and I. W. A. Basoka, “Safety factor analysis of landslides hazard as a result of rain condition infiltration on Buyan-Beratan Ancient Mountain,†Journal of Physics: Conference Series, vol. 1402, no. 2, p. 022002, Dec. 2019, doi: 10.1088/1742-6596/1402/2/022002.

D. Yao, J. Jia, F. Wu, and F. Yu, “Shear performance of prestressed ultra high strength concrete encased steel beams,†Construction and Building Materials, vol. 52, pp. 194–201, 2014, doi: 10.1016/j.conbuildmat.2013.11.006.

N. D. P. S, “Design and detailing of Pres-Stressed concrete bridge,†2012.

M. Hurst, Prestressed Concrete Design (2nd edition), 2nd Editio. CRC Press, 1998.

F. Wei, J. Yang, Y. Zhang, and C. Zhong, Design of Reinforced Concrete Bridges Executive Summary. Toronto: Civil Engineering University of Toronto, 2017.

N. Auliyanti and S. Murtiadi, “Modifikasi struktur gedung kondominium hotel Amarsvati Lombok dengan balok prategang (Structure modification of condominium hotel Amarsvati Lombok with prestressed beam),†Spektrum Sipil, vol. 6, no. 1, pp. 1–13, 2019.

J. Kraľovanec, F. Bahleda, J. Prokop, M. MoravÄík, and M. NesluÅ¡an, “Verification of actual prestressing in existing pre-tensioned members,†Applied Sciences (Switzerland), vol. 11, no. 13, 2021, doi: 10.3390/app11135971.

R. Kommajosyula, N. Venkat, and R. Rao, “Innovative Applications of Post-Tension for Restoration and Rehabilitation of Bridges and Structures-Case Studies in India,†Journal of Civil Engineering and Architecture, vol. 8, no. 7, pp. 869–880, 2014.

Badan Standardisasi Nasional, SNI 2847: 2019 tentang Persyaratan Beton Struktural Untuk Bangunan Gedung Dan Penjelasan Sebagai Revisi Dari Standar Nasional Indonesia 2847: 2013. Jakarta: Badan Standardisasi Nasional, 2019.

Badan Standardisasi Nasional, SNI 7833:2012 tentang Tata cara perancangan beton pracetak dan beton prategang untuk bangunan gedung. Jakarta: Badan Standardisasi Nasional, 2012.

Badan Standardisasi Nasional, SNI 1727: 2020 tentang Beban desain minimum dan kriteria terkait untuk bangunan gedung dan struktur lain sebagai revisi dari Standar Nasional Indonesia 1727: 2013 Beban minimum untuk perancangan bangunan gedung dan struktur lain. Jakarta: Badan Standardisasi Nasional, 2020.

I. N. Damara Putra, I. N. Sinarta, and I. K. Yasa Bagiarta, “Analisa kekuatan struktur bambu pada pembangunan entry building green school Ubud,†UKaRsT, vol. 4, no. 1, p. 39, Apr. 2020, doi: 10.30737/ukarst.v4i1.661.

Badan Standardisasi Nasional, SNI 1726: 2019 tentang Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan non gedung. Jakarta: Badan Standardisasi Nasional, 2019.

I. N. Sinarta and I. M. B. Pinandika, “Comparison Of Pushover Method And Direct Displacement Method In Earthquake Load Analysis With Performance-Based Design Concepts,†Ukarst : Universitas Kadiri Riset Teknik Sipil, vol. 4, pp. 192–206, 2020, doi: 10.30737/ukarst.v3i2.

FHWA, Post-Tensioning Tendon Installation and Grouting Manual, no. May. Washington DC: U.S. Department of Transportation, Federal Highway Administration, 2013.

N. Rasidi, Dasar-Dasar Struktur Beton Prategang, Cetakan Pertama. Malang: Polinema Press, 2018.

Published
2022-04-15
Section
Articles
Abstract viewed = 223 times
PDF downloaded = 385 times