Impact of Ethanol Exposure on Survival and the Expression of Endogenous Antioxidants in Drosophila melanogaster
Abstract
Background Ethanol, a widely consumed psychoactive substance, disrupts cellular and molecular processes, leading to a range of adverse physiological effects. Prolonged exposure to ethanol has been associated with severe neurological disorders, underscoring the importance of investigating its toxicological impact. This study aims to evaluate the effects of ethanol exposure on the phenotypical characteristics of Drosophila melanogaster, with a particular focus on survival and the expression of endogenous antioxidant-related genes.
Methods The study utilized an ethanol exposure assay on male w1118 flies, assessing survival and the expression of the sod1, sod2, and cat genes through reverse transcriptase quantitative PCR (RT-qPCR).
Results Ethanol exposure negatively affected survival in a concentration-dependent manner, with lower survival rates observed in Drosophila groups exposed to higher ethanol concentrations. Additionally, molecular analysis highlighted the significant role of the endogenous antioxidant gene cat in promoting survival in Drosophila under ethanol exposure.
Conclusion The findings of this study indicate that ethanol exposure is lethal to D. melanogaster in a concentration-dependent manner, with catalase playing a key role in mitigating its toxic effects and enhancing fly survival.
References
Almeida-Gonzalez, M., Boada, L. D., Burillo-Putze, G., Henriquez-Hernandez, L. A., Luzardo, O. P., Quintana-Montesdeoca, M. P., & Zumbado, M. (2022). Ethanol and Medical Psychotropics Co-Consumption in European Countries: Results from a Three-Year Retrospective Study of Forensic Samples in Spain. Toxics, 11(1). https://doi.org/10.3390/toxics11010045
Boby, N., Lee, E. B., Abbas, M. A., Park, N. H., Lee, S. P., Ali, M. S., Lee, S. J., & Park, S. C. (2021). Ethanol-Induced Hepatotoxicity and Alcohol Metabolism Regulation by GABA-Enriched Fermented Smilax china Root Extract in Rats. Foods, 10(10). https://doi.org/10.3390/foods10102381
Das, S. K., & Vasudevan, D. M. (2007). Alcohol-induced oxidative stress. Life Sci, 81(3), 177-187. https://doi.org/10.1016/j.lfs.2007.05.005
Doke, S. K., & Dhawale, S. C. (2015). Alternatives to animal testing: A review. Saudi Pharm J, 23(3), 223-229. https://doi.org/10.1016/j.jsps.2013.11.002
Fernandes, L. M. P., de Andrade, E. F., Monteiro, M. C., Cartágenes, S. C., Lima, R. R., Prediger, R. D., & Maia, C. S. F. (2017). Ethanol. In Addictive Substances and Neurological Disease (pp. 201-215). https://doi.org/10.1016/b978-0-12-805373-7.00020-7
Hardiyanti, W., Djabir, Y. Y., Fatiah, D., Pratama, M. R., Putri, T., Chaeratunnisa, R., Latada, N. P., Mudjahid, M., Asri, R. M., & Nainu, F. (2024). Evaluating the Impact of Vitamin D(3) on NF-kappaB and JAK/STAT Signaling Pathways in Drosophila melanogaster. ACS Omega, 9(18), 20135-20141. https://doi.org/10.1021/acsomega.4c00134
Huang, J., & Lee, Y. (2023). The power of Drosophila genetics in studying insect toxicology and chemical ecology. Crop Health, 1(1), 12. https://doi.org/10.1007/s44297-023-00012-x
Jomova, K., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2024). Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol, 98(5), 1323-1367. https://doi.org/10.1007/s00204-024-03696-4
Moraes, K. C. M., & Montagne, J. (2021). Drosophila melanogaster: A Powerful Tiny Animal Model for the Study of Metabolic Hepatic Diseases. Front Physiol, 12, 728407. https://doi.org/10.3389/fphys.2021.728407
Nunez, K. M., Catalano, J. L., Scaplen, K. M., & Kaun, K. R. (2023). Ethanol Behavioral Responses in Drosophila. Cold Spring Harb Protoc, 2023(10), 719-724. https://doi.org/10.1101/pdb.top107887
Obad, A., Peeran, A., Little, J. I., Haddad, G. E., & Tarzami, S. T. (2018). Alcohol-Mediated Organ Damages: Heart and Brain. Front Pharmacol, 9, 81. https://doi.org/10.3389/fphar.2018.00081
Rand, M. D., Tennessen, J. M., Mackay, T. F. C., & Anholt, R. R. H. (2023). Perspectives on the Drosophila melanogaster Model for Advances in Toxicological Science. Current Protocols, 3(8), e870. https://doi.org/https://doi.org/10.1002/cpz1.870
Rosa, R. A., Latada, N. P., Asbah, A., Mu, arif, A., Yulianty, R., & Nainu, F. (2021). Eksplorasi Efek Etanol Terhadap Survival dan Status Imunitas Drosophila melanogaster. JFIOnline | Print ISSN 1412-1107 | e-ISSN 2355-696X, 13(2), 146-153. https://doi.org/10.35617/jfionline.v13i2.85
Rumata, N. R., Purwaningsih, D., Asbah, A., As'ad, M. F., Chadran, D., Emran, T. B., & Nainu, F. (2023). Phenotypical and molecular assessments on the pharmacological effects of curcumin in Drosophila melanogaster. Narra J, 3(2), e117. https://doi.org/10.52225/narra.v3i2.117
Sandhu, S., Kollah, A. P., Lewellyn, L., Chan, R. F., & Grotewiel, M. (2015). An inexpensive, scalable behavioral assay for measuring ethanol sedation sensitivity and rapid tolerance in Drosophila. J Vis Exp(98). https://doi.org/10.3791/52676
Tabakoff, B., & Hoffman, P. L. (2000). Animal models in alcohol research. Alcohol Res Health, 24(2), 77-84.
Zou, S., Meadows, S., Sharp, L., Jan, L. Y., & Jan, Y. N. (2000). Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proceedings of the National Academy of Sciences, 97(25), 13726-13731. https://doi.org/doi:10.1073/pnas.260496697