Agricultural Precision: Transformation and Sustainability

  • Yohanes Parlindungan Situmeang Fakultas Pertanian, Universitas Warmadewa. Bali
  • Ni Luh Putu Sulis Dewi Damayanti
  • Anak Agung Sagung Manik Chindrawati
Keywords: Biochar, sustainable agriculture, precision agriculture

Abstract

Agriculture, a crucial provider of food and raw materials, is evolving in response to technological advancements and population growth. Precision agriculture (PA), coupled with biochar utilization, has emerged to address global challenges such as resource scarcity, climate change, and rising food demands. PA employs IoT sensors for plant monitoring, enhancing efficiency and sustainability. The growing role of technology has sparked concerns about the environmental impact of modern agriculture, necessitating a balance between productivity and environmental preservation. Biochar, produced through biomass pyrolysis, offers soil benefits like improved structure and water retention while reducing CO2 emissions and enhancing nutrient availability. Despite challenges like environmental variation and cost, opportunities lie in advanced research, partnerships, policies, waste management, and carbon footprint reduction. This literature study highlights the synergy between precision agriculture and biochar, showcasing potential for transformative and sustainable agricultural practices that address global food needs while safeguarding the environment.

Author Biography

Yohanes Parlindungan Situmeang, Fakultas Pertanian, Universitas Warmadewa. Bali

References

Malihah, L. (2022). Tantangan Dalam Upaya Mengatasi Dampak Perubahan Iklim Dan Mendukung Pembangunan Ekonomi Berkelanjutan: Sebuah Tinjauan. Jurnal Kebijakan Pembangunan, 17(2), 219–232. https://doi.org/10.47441/jkp.v17i2.272

Bernadi, I. P. (2023). Pemodelan Pertanian Presisi Untuk Meningkatkan Produktivitas Padi Dengan Pendekatan Sistem Dinamik. Institut Teknologi Sepuluh Nopember.

Pathak, H. S., Brown, P., & Best, T. (2019). A systematic literature review of the factors affecting the precision agriculture adoption process. Precision Agriculture, 20(6), 1292–1316. https://doi.org/10.1007/s11119-019-09653-x

Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. (2019). Precision agriculture techniques and practices: From considerations to applications. Sensors (Switzerland), 19(17), 1–25. https://doi.org/10.3390/s19173796

Wang, N., Zhang, N., & Wang, M. (2006). Wireless sensors in agriculture and food industry—Recent development and future perspective. Computers and Electronics in Agriculture, 50(1), 1–14. https://doi.org/https://doi.org/10.1016/j.compag.2005.09.003

Aqeel-ur-Rehman, Abbasi, A. Z., Islam, N., & Shaikh, Z. A. (2014). A review of wireless sensors and networks’ applications in agriculture. Computer Standards & Interfaces, 36(2), 263–270. https://doi.org/https://doi.org/10.1016/j.csi.2011.03.004

Pham, X., & Stack, M. (2018). How data analytics is transforming agriculture. Business Horizons, 61(1), 125–133. https://doi.org/https://doi.org/10.1016/j.bushor.2017.09.011

Suciaty, T., Hidayat, Y. R., & Sunaryo, Y. (2022). Meningkatkan Kualitas Hubungan Pemasok-Pembeli Pada Rantai Pasok Produk Sayur Segar. Paradigma Agribisnis, 5(1), 93–100.

Campos, P., Miller, A. Z., Knicker, H., Costa-Pereira, M. F., Merino, A., & De la Rosa, J. M. (2020). Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Management, 105, 256–267.

Sri Shalini, S., Palanivelu, K., Ramachandran, A., & Raghavan, V. (2021). Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—A review. Biomass Conversion and Biorefinery, 11, 2247–2267.

Situmeang, Y. P. (2021). The Use of Bamboo Biochar as a Soil Improver on the Growth and Yield of Mustard Plants. 1(2), 1–7. https://doi.org/https://doi.org/10.22225/aj.2.1.2022.14-18

Situmeang, Y. P., Sudita, I. D. N., Suarta, M., & Damayanti, N. L. P. S. D. (2023). Utilization of Livestock Waste as Biochar and Poschar to Increase Soil Organic Matter and Red Chili Yields. AJARCDE (Asian Journal of Applied Research for Community Development and Empowerment), 7(2), 63–68. https://doi.org/10.29165/ajarcde.v7i2.257

Ghorbani, M., Amirahmadi, E., Konvalina, P., Moudrý, J., Bárta, J., Kopecký, M., Teodorescu, R. I., & Bucur, R. D. (2022). Comparative influence of biochar and zeolite on soil hydrological indices and growth characteristics of corn (Zea mays L.). Water, 14(21), 3506.

Arif, M., Jan, T., Riaz, M., Fahad, S., Adnan, M., Amanullah, Ali, K., Mian, I. A., Khan, B., & Rasul, F. (2020). Biochar; a remedy for climate change. Environment, Climate, Plant and Vegetation Growth, 151–171.

Rashid, M., Hussain, Q., Khan, K. S., Al-Wabel, M. I., Afeng, Z., Akmal, M., Ijaz, S. S., Aziz, R., Shah, G. A., & Mehdi, S. M. (2020). Prospects of biochar in alkaline soils to mitigate climate change. Environment, Climate, Plant and Vegetation Growth, 133–149.

Eyhorn, F., Muller, A., Reganold, J. P., Frison, E., Herren, H. R., Luttikholt, L., Mueller, A., Sanders, J., Scialabba, N. E. H., Seufert, V., & Smith, P. (2019). Sustainability in global agriculture driven by organic farming. Nature Sustainability, 2(4), 253–255. https://doi.org/10.1038/s41893-019-0266-6

Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A., Jonell, M., Clark, M., Gordon, L. J., Fanzo, J., Hawkes, C., Zurayk, R., Rivera, J. A., De Vries, W., Majele Sibanda, L., … Murray, C. J. L. (2019). Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393(10170), 447–492. https://doi.org/10.1016/S0140-6736(18)31788-4

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., … Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342. https://doi.org/10.1038/nature10452

Markard, J., Raven, R., & Truffer, B. (2012). Sustainability transitions: An emerging field of research and its prospects. Research Policy, 41(6), 955–967. https://doi.org/https://doi.org/10.1016/j.respol.2012.02.013

Brunori, G., Barjolle, D., Dockes, A.-C., Helmle, S., Ingram, J., Klerkx, L., Moschitz, H., Nemes, G., & Tisenkopfs, T. (2013). CAP Reform and Innovation: The Role of Learning and Innovation Networks. EuroChoices, 12(2), 27–33. https://doi.org/https://doi.org/10.1111/1746-692X.12025

Gert Spaargaren, Peter Oosterveer, A. L. (2013). Food Practices in Transition. In Routledge. https://doi.org/10.4324/9780203135921

Qambrani, N. A., Rahman, M. M., Won, S., Shim, S., & Ra, C. (2017). Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 79, 255–273

Van Nguyen, T. T., Phan, A. N., Nguyen, T.-A., Nguyen, T. K., Nguyen, S. T., Pugazhendhi, A., & Phuong, H. H. K. (2022). Valorization of agriculture waste biomass as biochar: As first-rate biosorbent for remediation of contaminated soil. Chemosphere, 135834.

Rajput, V. D., Minkina, T., Ahmed, B., Singh, V. K., Mandzhieva, S., Sushkova, S., Bauer, T., Verma, K. K., Shan, S., & van Hullebusch, E. D. (2022). Nano-biochar: A novel solution for sustainable agriculture and environmental remediation. Environmental Research, 210, 112891.

Bhatia, S. K., Palai, A. K., Kumar, A., Bhatia, R. K., Patel, A. K., Thakur, V. K., & Yang, Y.-H. (2021). Trends in renewable energy production employing biomass-based biochar. Bioresource Technology, 340, 125644.

Huang, Y., Li, B., Liu, D., Xie, X., Zhang, H., Sun, H., Hu, X., & Zhang, S. (2020). Fundamental advances in biomass autothermal/oxidative pyrolysis: a review. ACS Sustainable Chemistry & Engineering, 8(32), 11888–11905

Zhu, X., Chen, B., Zhu, L., & Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. In Environmental Pollution (Vol. 227, pp. 98–115). https://doi.org/10.1016/j.envpol.2017.04.032

Abd El-Mageed, T. A., Abdelkhalik, A., Abd El-Mageed, S. A., & Semida, W. M. (2021). Co-composted poultry litter biochar enhanced soil quality and eggplant productivity under different irrigation regimes. Journal of Soil Science and Plant Nutrition, 21(3), 1917–1933.

Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4), 379–420. https://doi.org/10.1007/s42773-020-00065-z

Leng, L., & Huang, H. (2018). An overview of the effect of pyrolysis process parameters on biochar stability. Bioresource Technology, 270, 627–642.

Kapoor, A., Sharma, R., Kumar, A., & Sepehya, S. (2022). Biochar as a means to improve soil fertility and crop productivity: a review. Journal of Plant Nutrition, 45(15), 2380–2388.

Manikandan, S. K., & Nair, V. (2023). Dual-role of coconut shell biochar as a soil enhancer and catalyst support in bioremediation. Biomass Conversion and Biorefinery, 1–12.

Gullap, M. K., Severoglu, S., Karabacak, T., Yazici, A., Ekinci, M., Turan, M., & Yildirim, E. (2022). Biochar derived from hazelnut shells mitigates the impact of drought stress on soybean seedlings. New Zealand Journal of Crop and Horticultural Science, 1–19.

Lalarukh, I., Amjad, S. F., Mansoora, N., Al-Dhumri, S. A., Alshahri, A. H., Almutari, M. M., Alhusayni, †Fatimah S, Al-Shammari, W. B., Poczai, P., & Abbas, M. H. H. (2022). Integral effects of brassinosteroids and timber waste biochar enhances the drought tolerance capacity of wheat plant. Scientific Reports, 12(1), 12842.

Javed, T., Singhal, R. K., Shabbir, R., Shah, A. N., Kumar, P., Jinger, D., Dharmappa, P. M., Shad, M. A., Saha, D., & Anuragi, H. (2022). Recent advances in agronomic and physio-molecular approaches for improving nitrogen use efficiency in crop plants. Frontiers in Plant Science, 13, 877544.

Das, K. P., Sharma, D., & Satapathy, B. K. (2022). Electrospun fibrous constructs towards clean and sustainable agricultural prospects: SWOT analysis and TOWS based strategy assessment. Journal of Cleaner Production, 133137.

Shaikh, T. A., Rasool, T., & Lone, F. R. (2022). Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Computers and Electronics in Agriculture, 198, 107119.

Ma, B., Shao, S., Ai, L., Chen, S., & Zhang, L. (2023). Influences of biochar with selenite on bacterial community in soil and Cd in peanut. Ecotoxicology and Environmental Safety, 255, 114742.

Qian, S., Zhou, X., Fu, Y., Song, B., Yan, H., Chen, Z., Sun, Q., Ye, H., Qin, L., & Lai, C. (2023). Biochar-compost as a new option for soil improvement: Application in various problem soils. Science of The Total Environment, 870, 162024.

Wang, H. S.-H., & Yao, Y. (2023). Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review. Resources, Conservation and Recycling, 190, 10684

Chen, B., Cai, W., & Garg, A. (2023). Relationship between bioelectricity and soil–water characteristics of biochar-aided plant microbial fuel cell. Acta Geotechnica, 1–14.

Kumar, H., Ganesan, S. P., Sang, H., Sahoo, L., Garg, A., Sekharan, S., & Leung, A. K. (2022). Exploring relations between plant photochemical quantum parameters and unsaturated soil water retention for biochars and pith amended soils. Science of The Total Environment, 804, 150251.

Antonangelo, J. A., Sun, X., & Zhang, H. (2021). The roles of co-composted biochar (COMBI) in improving soil quality, crop productivity, and toxic metal amelioration. Journal of Environmental Management, 277, 111443.

Low, Y. W., & Yee, K. F. (2021). A review on lignocellulosic biomass waste into biochar-derived catalyst: Current conversion techniques, sustainable applications, and challenges. Biomass and Bioenergy, 154, 106245.

Pocha, C. K. R., Chia, S. R., Chia, W. Y., Koyande, A. K., Nomanbhay, S., & Chew, K. W. (2022). Utilization of agricultural lignocellulosic wastes for biofuels and green diesel production. Chemosphere, 290, 133246.

Seow, Y. X., Tan, Y. H., Mubarak, N. M., Kansedo, J., Khalid, M., Ibrahim, M. L., & Ghasemi, M. (2022). A review of biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. Journal of Environmental Chemical Engineering, 10(1), 107017.

Anstoetz, M. (2016). Synthesis optimisation, characterisation and evaluation of an iron-based oxalate-phosphate-amine MOF (OPA-MOF) for innovative application in agriculture. Southern Cross University.

Prasetiyo, Y., Hidayat, B., & Sitorus, B. (2020). Karakteristik Kimia Biochar dari Beberapa Biomassa dan Metode Pirolisis. AGRIUM: Jurnal Ilmu Pertanian, 23(1), 17–20

Lin, H., Wang, Z., Liu, C., & Dong, Y. (2022). Technologies for removing heavy metal from contaminated soils on farmland: A review. Chemosphere, 305, 135457.

Mapegau, M., Hayati, I., Ichwan, B., & Marlina, M. (2023). Perubahan Iklim Cekaman dan Sistem Pertanian Masa Depan. Salim Media Indonesia

Hamidzadeh, Z., Ghorbannezhad, P., Ketabchi, M. R., & Yeganeh, B. (2023). Biomass-derived biochar and its application in agriculture. Fuel, 341, 127701.

Published
2023-12-31
How to Cite
Situmeang, Y. P., Ni Luh Putu Sulis Dewi Damayanti, & Anak Agung Sagung Manik Chindrawati. (2023). Agricultural Precision: Transformation and Sustainability. Agriwar Journal , 3(2), 67-72. Retrieved from https://www.ejournal.warmadewa.ac.id/index.php/agriwar/article/view/8784
Abstract viewed = 84 times
PDF downloaded = 48 times